[VAE] Auto-Encoding Variational Bayes
·
DeepLearning/GAN
Variational Auto-Encoder(VAE)에 대한 논문. 0. Auto-Encoder란? 오토앤코더는 입력 데이터를 압축(Encoding)하고, 압축된 표현에서 원본 입력을 재구성(Decoding)하는 신경망 구조.입력 데이터를 압축하고 복원하는 과정에서 입력의 특징을 학습하게 된다.데이터 압축, 차원 감소, 이상 감지, 노이즈 제거 등에 활용. 1. 생성형 모델 관점에서 Auto-Encoder Auto-Encoder는 Encoder가 단순히 입력 데이터를 어떤 벡터(z)로 압축해서 표현.이렇게 압축된 latent vector는 분포에 대한 제약이 없음. (z가 어떠한 분포를 따르지 않음)latent space에서 임의의 z를 샘플링해서 생성(Decoding)할 경우 원하는 데이터가 생성될지 ..
[Tracking] SORT: SIMPLE ONLINE AND REALTIME TRACKING 리뷰
·
DeepLearning/Tracking
Abstract본 논문은 Online 및 실시간 애플리케이션을 위한 Multiple Object Tracking(MOT)에 대한 실용적인 접근 방식을 제안Tracking 구성 요소에 칼만 필터 및 헝가리안 알고리즘과 같은 기술의 기초적인 조합을 사용당시의 최첨단 Online 추적에 최첨단 성능을 달성 Introduction본 논문은 MOT 문제에 대한 Tracking-by-Detection 프레임워크의 간소한 구현을 제시SORT는 이전 프레임과 현재 프레임의 탐지만 사용하여 Online Tracking을 목표로 한다또한 고전적이지만 효율적인 칼만 필터와 헝가리안 알고리즘을 Tracking의 motion prediction 및 data association을 처리하는 데 사용이러한 최소한의 Tracking..
[YOLO] YOLOv11 Object Segmentation
·
DeepLearning/YOLO
1. Install1.1 Conda env createconda create -n yolov11 python=3.8 -yconda 환경을 생성해 준다python version은 개인의 CUDA version을 참고하여 맞춰주면 된다 1.2 Pytorch installhttps://pytorch.org/get-started/previous-versions/ Previous PyTorch VersionsInstalling previous versions of PyTorchpytorch.org위 Pytorch 페이지에서 자신의 CUDA version에 맞는 pip install을 설치(기타 opencv-python, numpy 등 필요 패키지 설치)  2. 필요 패키지 importimport torchimpo..
[Zero-DCE] Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement 리뷰
·
DeepLearning
Abstract본 논문은 이미지별 곡선 추정 작업으로 light enhancement를 공식화하는 Zero-Reference Deep Curve Estimation(Zero-DCE)를 제안DCE-Net을 학습시켜 주어진 이미지의 픽셀 단위, 고차 곡선을 추정Zero-DCE는 학습 중에 쌍을 이루는 Reference 이미지가 필요하지 않다신중하게 공식화된 비참조 손실함수(non-reference loss functions)를 통해 네트워크를 학습 Introduction본 연구에서는 저조도 이미지 향상을 위한 새로운 딥러닝 기반 방법인 Zero-Reference Deep Curve Estimation(Zero-DCE)를 제안image-to-image 매핑을 수행하는 대신, 이미지별 곡선 추정 문제로 재구성저..
[LaKDNet] Revisiting Image Deblurring with an Efficient ConvNet 리뷰
·
DeepLearning
Abstract 이미지 흐림 제거는 흐릿한 이미지에서 선명한 이미지를 복구하는 것CNN은 이 분야에서 좋은 성과를 거두었으나, Transformer라는 대체 네트워크가 더 강력한 성능을 보여주었다본 논문은 Transformer보다 비슷하거나 더 나은 성능을 보여주는 경량 CNN을 제안LaKD라는 효율적인 CNN 블록을 제안Transformer보다 비슷하거나 더 큰 ERF를 달성하며 파라미터는 더 작다또한 ERF를 정량적으로 특성화하고 간결하고 직관적인 ERFMeter 메트릭을 제안 Introduction기존 알고리즘은 blur kernel 추정과 prior 또는 regularzier(정규화)를 사용한 블라인드 디컨볼루션에 의존CNN의 발전에 따라 이미지 디블러링에 사용최근에는 CNN의 제약을 완화하는 구..
손실 함수 (Loss Function)
·
DeepLearning/Concept
Loss Function?딥러닝 모델에서 모델의 output인 예측값과 실제 정답(ground truth)인 실제값이 얼마나 유사한지 판단하는 기준.즉, 모델이 예측한 값과 실제 정답의 차이를 정량화하는 함수.이 loss function을 통해 나온 손실값을 최소화하는 방향으로 모델 파라미터를 업데이트. (학습) 회귀 문제 (Regression)MSE (Mean Squared Error)평균 제곱 오차로 예측값과 실제값의 차이의 제곱으로 손실을 계산하는 함수.오차값에 제곱을 하기 때문에 이상치에 민감하다. MAE (Mean Absolute Error)평균 절대값 오차로 예측값과 실제값 차이의 절대값으로 손실을 계산하는 함수.MSE에 비해 이상치에 둔감하다.  분류 문제 (Classification)BCE..
woongs_93
'DeepLearning' 카테고리의 글 목록