[LaKDNet] Revisiting Image Deblurring with an Efficient ConvNet 리뷰
·
DeepLearning
Abstract 이미지 흐림 제거는 흐릿한 이미지에서 선명한 이미지를 복구하는 것CNN은 이 분야에서 좋은 성과를 거두었으나, Transformer라는 대체 네트워크가 더 강력한 성능을 보여주었다본 논문은 Transformer보다 비슷하거나 더 나은 성능을 보여주는 경량 CNN을 제안LaKD라는 효율적인 CNN 블록을 제안Transformer보다 비슷하거나 더 큰 ERF를 달성하며 파라미터는 더 작다또한 ERF를 정량적으로 특성화하고 간결하고 직관적인 ERFMeter 메트릭을 제안 Introduction기존 알고리즘은 blur kernel 추정과 prior 또는 regularzier(정규화)를 사용한 블라인드 디컨볼루션에 의존CNN의 발전에 따라 이미지 디블러링에 사용최근에는 CNN의 제약을 완화하는 구..
[GAN] DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better
·
DeepLearning/GAN
Abstract DeblurGAN-v2는 motion deblurring을 위한 새로운 end-to-end GAN이다. Generator의 핵심 block으로 Feature Pyramid Network를 도입. 다양항 backbone과 유연하게 작동하여 성능과 효율성 사이의 균형을 찾을 수 있다. 1. Introduction Blur는 일반적으로 알 수 없는 blur kernel과 noise가 있는데 이를 역산하기는 까다롭다. 최근 딥러닝 기반으로 image restoration 분야가 크게 발전, 특히 GAN은 기존 feed-forward encoder 방식 보다 더 선명하고 그럴듯한 texture를 생성한다. 대표적으로 DeblurGAN이 있다. 본 논문은 DeblurGAN을 개선하고 높은 유연성을 ..
[GAN] DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks, 논문 리뷰
·
DeepLearning/GAN
Abstract Motion Deblurring을 위한 end-to-end 학습 방법인 DeblurGAN을 제시. conditinal GAN과 content loss를 기반으로 학습. Deblurring model의 품질은 Object Detection 방식으로 평가. DeepDeblur보다 5배 빠르다고 소개. 1. Introduction 최근 GAN을 이용해서 image super-resolution 및 inpainting 관련 분야에서 상당한 진전이 있음. 이에 영감을 받아 Deblurring을 image-to-image 변환의 특별한 case로 취급. Gradient Penalty와 Perceptual Loss를 가진 Wasserstein GAN을 사용하는데 이는 기존 MSE or MAE를 사용하..
[Classification] ResNet
·
DeepLearning/Classification
ResNet 2015년 ILSVRC에서 우승, MS 개발. 2014년 GooLeNet이 22개 층인데 반면 ResNet은 152개 층. (층수가 깊어졌다) 깊게 하면 무조건 성능이 좋은가? -> 아니다! Gradient Vanishing/Exploding 파라미터 개수가 너무 많아지는 문제 발생 Residual Block 기존 일반적인 CNN은 입력 데이터(x)를 타겟값(y)으로 mapping 하는 함수 H(x)를 찾는 것이 목표이다. H(x) = ReLU ( w2 * ( ReLU ( w1 * x ) ) ) (w는 가중치) 이때, H(x)와 y의 차이를 최소화하는 방향으로 학습하게 된다. ResNet은 기존 CNN과 달리 입력값을 출력 값에 더하는 지름길(shortcut or skip-connection..
[Classification] VGGNet
·
DeepLearning/Classification
VGGNet VGGNet 연구팀은 망의 깊이가 깊을 수록 model의 성능에 어떤 영향을 끼치는지 연구. 5x5 Conv를 한번 하는것 보다, 3x3 Conv를 두번 하는것이 망의 깊이가 깊어지고, parameter 수도 적어짐. VGGNet은 모든 Convolution filter size를 3x3으로 고정해서 사용. Pytorch Code import torch import torch.nn as nn def CBR2d(in_channels, out_channels, _kernal_size, _stride, _padding): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=_kernal_size, stride=_stride..
[Classification] AlexNet
·
DeepLearning/Classification
AlexNet 기본 구조 AlexNet은 5개의 Convolution layer와 3개의 fully connected layer로 구성 되어있다. 입력 영상의 크기로 227x227x3을 사용. (3은 RGB) 성능 개선을 위해 ReLU, DropOut layer를 활용. Pytorch Code import torch import torch.nn as nn def CBR2d(in_channels, out_channels, _kernal_size, _stride, _padding): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=_kernal_size, stride=_stride, padding=_padding), nn.Batc..
woongs_93
'cnn' 태그의 글 목록