[Segmentation3D] PointNet
·
DeepLearning/Segmentation
PointNet PointNet은 3D data인 point data를 Classification, Segmentation 하기 위한 모델이다. 2D data와 달리 3D data는 정규화 데이터가 아니고, 불규칙하게 얻어진다. (2d는 행렬로 regular 하게 얻어진다) 특정 rendering 없이 point data를 다루기 위해서는 2가지 성질을 만족해야 한다. 1. Permutation invariant 2. Rigid motion invariant Permutation invariant 3d point는 특정 순서 없이 주어지기 때문에 어떠한 순서로 오더라도 output이 달라지면 안 된다. 이를 Permutation invariant(직역하면 순열 불변)라고 한다. PointNet에서는 Pe..
[Segmentation] SegNet
·
DeepLearning/Segmentation
SegNet SegNet은 Encoder-Decoder 유형의 구조를 사용하는 Image Segmentation 모델이다. UNet과 마찬가지로 FCN의 구조를 이용했다고 볼 수 있다. Encoder SegNet 구조의 왼쪽 부분을 Encoder라 하며, Encoder에서는 VGG16의 13개 Convolution Layer을 동일하게 사용한다. Convolution, Pooling 구조들 통해 Input Image의 특징 맵(featrue map)을 추출하게 된다. Decoder 오른쪽 부분을 Decoder라고 한다. Decoder에서는 Encoder에서 뽑은 특징 맵을 Upsampling과 Convolution을 하여 작아진 이미지를 원래 크기로 되돌린다. Upsampling 후 마지막 Layer에서..
woongs_93
'DeepLearning' 태그의 글 목록