손실 함수 (Loss Function)
·
DeepLearning/Concept
Loss Function?딥러닝 모델에서 모델의 output인 예측값과 실제 정답(ground truth)인 실제값이 얼마나 유사한지 판단하는 기준.즉, 모델이 예측한 값과 실제 정답의 차이를 정량화하는 함수.이 loss function을 통해 나온 손실값을 최소화하는 방향으로 모델 파라미터를 업데이트. (학습) 회귀 문제 (Regression)MSE (Mean Squared Error)평균 제곱 오차로 예측값과 실제값의 차이의 제곱으로 손실을 계산하는 함수.오차값에 제곱을 하기 때문에 이상치에 민감하다. MAE (Mean Absolute Error)평균 절대값 오차로 예측값과 실제값 차이의 절대값으로 손실을 계산하는 함수.MSE에 비해 이상치에 둔감하다.  분류 문제 (Classification)BCE..
Back Propagation, 역전파
·
DeepLearning/Concept
Neural Network 역전파(Back Propagation)를 설명하기 앞서 인공 신경망(Neural Network)에 대해 간단하게 설명하고 넘어가 보자. 위 그림에서와 같이 인공 신경망은 입력층, 은닉층(여러 개일 수 있다), 출력층을 가지고 있고, 사람의 뉴런 모양과 비슷한 퍼셉트론으로 이루어져 있다. 이 인공 신경망에서 입력 데이터(x1, x2)를 받아 최적의 출력 데이터(o1, o2)를 계산할 수 있는 각 퍼셉트론의 가중치(w1~w8)들을 업데이트하는 과정을 신경망 학습이라고 할 수 있겠다. Forward Propagation 순 전파(Forward Propagation)는 입력 데이터를 은닉층을 거쳐 출력층으로 값을 도출하는 것을 의미한다. 순 전파의 과정을 설명하기 위해 입력층과 가중치..
woongs_93
'Loss function' 태그의 글 목록